46 lines
1.1 KiB
Python
46 lines
1.1 KiB
Python
|
import numpy as np
|
||
|
import pylab as pl
|
||
|
|
||
|
|
||
|
def ladder_plus(xs: np.ndarray, psi: np.ndarray) -> np.ndarray:
|
||
|
dx = xs[1] - xs[0]
|
||
|
return -np.gradient(psi, dx) + xs * psi
|
||
|
|
||
|
|
||
|
def ladder_minus(xs: np.ndarray, psi: np.ndarray) -> np.ndarray:
|
||
|
dx = xs[1] - xs[0]
|
||
|
return np.gradient(psi, dx) + xs * psi
|
||
|
|
||
|
|
||
|
def normalize(psi: np.ndarray) -> None:
|
||
|
psi /= np.sqrt(np.sum(psi * np.conjugate(psi)))
|
||
|
|
||
|
|
||
|
x_vals = np.linspace(-5, 5, 1000)
|
||
|
|
||
|
psi_0 = np.exp(-x_vals ** 2)
|
||
|
normalize(psi_0)
|
||
|
|
||
|
psi_funcs = [psi_0]
|
||
|
for i in range(1, 4):
|
||
|
psi_next = ladder_plus(x_vals, psi_funcs[i - 1])
|
||
|
normalize(psi_next)
|
||
|
psi_funcs.append(psi_next)
|
||
|
|
||
|
pl.rcParams['figure.dpi'] = 300
|
||
|
fig, axs = pl.subplots(2, 2, tight_layout=True)
|
||
|
fig.tight_layout(pad=2.0)
|
||
|
axs[0, 0].plot(x_vals, psi_funcs[0])
|
||
|
axs[0, 0].set_title('ψ0')
|
||
|
axs[0, 0].grid()
|
||
|
axs[0, 1].plot(x_vals, psi_funcs[1], 'tab:orange')
|
||
|
axs[0, 1].set_title('ψ1')
|
||
|
axs[0, 1].grid()
|
||
|
axs[1, 0].plot(x_vals, psi_funcs[2], 'tab:green')
|
||
|
axs[1, 0].set_title('ψ2')
|
||
|
axs[1, 0].grid()
|
||
|
axs[1, 1].plot(x_vals, psi_funcs[3], 'tab:red')
|
||
|
axs[1, 1].set_title('ψ3')
|
||
|
axs[1, 1].grid()
|
||
|
pl.show()
|