34 lines
992 B
Python
34 lines
992 B
Python
|
import numpy as np
|
||
|
import pylab as pl
|
||
|
|
||
|
|
||
|
# recurrence relation is H_n(x) = 2*x*H_{n-1}(x) - 2*(n-1)*H_{n-2}(x)
|
||
|
# source https://en.wikipedia.org/wiki/Hermite_polynomials
|
||
|
def hermite(x: np.ndarray, n: int) -> np.ndarray:
|
||
|
if n == 0:
|
||
|
return 1.0 + 0.0 * x
|
||
|
if n == 1:
|
||
|
return 2.0 * x
|
||
|
return 2.0 * x * hermite(x, n - 1) - 2.0 * (n - 1) * hermite(x, n - 2)
|
||
|
|
||
|
|
||
|
def normalize(psi: np.ndarray) -> None:
|
||
|
psi /= np.sqrt(np.sum(psi * np.conjugate(psi)))
|
||
|
|
||
|
|
||
|
x_vals = np.linspace(-5, 5, 1000)
|
||
|
gaussian = np.exp(-x_vals ** 2)
|
||
|
|
||
|
psi_funcs = []
|
||
|
for n in range(4):
|
||
|
psi = hermite(x_vals, n) * gaussian
|
||
|
normalize(psi)
|
||
|
psi_funcs.append(psi)
|
||
|
|
||
|
for i, psi in enumerate(psi_funcs):
|
||
|
psi_sqrd = np.abs(psi) ** 2
|
||
|
# integrate in the region outside of -sqrt(2):sqrt(2)
|
||
|
prob = (np.trapz(psi_sqrd[x_vals < -np.sqrt(2)], x_vals[x_vals < -np.sqrt(2)])
|
||
|
+ np.trapz(psi_sqrd[x_vals > np.sqrt(2)], x_vals[x_vals > np.sqrt(2)]))
|
||
|
print(f'prob_outside_{i} = {prob}')
|