import numpy as np import matplotlib.pyplot as plt import matplotlib.animation as animation iterations = 60000 # iterations for approximation step = 0.0001 # step size for x step_sqrd = pow(step, 2) # square of step size epsilon = 2.5 # energy level, should be integer n+1/2 for good solutions psi = 0.0 # initial value of wave function potential = 0.0 # initial value of the potential energy function pos = -1 * (iterations - 2) * step # initial value of the position potential_past_2 = epsilon + pos - 2 * step # k_0, potential energy at two steps before current potential_past_1 = epsilon + pos - step # k_1, potential energy at one step before current amplitude = 0.1 # initial amplitude of wave function psi_past_2 = 0 # y_0, wave function at two steps before current psi_past_1 = amplitude # y_1, wave function at one step before current x_out = [] # list to store x values for plotting y_out = [] # list to store y values for plotting fig, ax = plt.subplots() line, = ax.plot([], [], label=f'epsilon = {epsilon}') ax.set_xlim(-1, 1) ax.set_ylim(-1, 1) ax.set_xlabel("x") ax.set_ylabel("y") ax.set_title("Schrodinger Eqn in Harmonic Potential") ax.legend(loc=1) def init(): line.set_data([], []) return line, def update(frame): global pos, potential, psi, potential_past_2, potential_past_1, psi_past_2, psi_past_1 for i in range(frame * 1000, (frame * 1000) + 1000): print(i) pos += step potential = 2 * epsilon - pow(pos, 2) # potential energy function b = step_sqrd / 12 # constant used for Numerov # Numerov method to calculate psi at current step psi = ((2 * (1 - 5 * b * potential_past_1) * psi_past_1 - (1 + b * potential_past_2) * psi_past_2) / (1 + b * potential)) # Save for plotting x_out.append(pos) y_out.append(psi) # Shift for next iteration psi_past_2 = psi_past_1 psi_past_1 = psi potential_past_2 = potential_past_1 potential_past_1 = potential line.set_data(x_out, y_out) return line, ani = animation.FuncAnimation(fig, update, frames=np.arange(0, (iterations - 2)), init_func=init, blit=True) plt.show()